No basketball matches found matching your criteria.
Discover the thrill of basketball betting with our daily updated predictions on matches where the total points exceed 123.5. Our expert analysis provides you with insights and strategies to enhance your betting experience. Dive into our comprehensive guide to understand the dynamics of high-scoring games and make informed decisions.
Basketball over 123.5 points betting is a popular form of sports wagering where bettors predict that the total points scored by both teams in a game will surpass 123.5. This type of bet appeals to those who anticipate a high-scoring game, often influenced by factors such as offensive prowess, defensive weaknesses, and historical matchups.
Our team of experts provides daily updates on upcoming basketball matches, focusing on those with high over/under totals. By analyzing recent performances, player injuries, and other critical factors, we offer reliable predictions to guide your betting decisions.
Stay tuned for daily updates as we analyze new data and adjust our predictions accordingly.
To enhance your betting strategy, it's crucial to examine historical data on past games. This analysis helps identify patterns and trends that can influence future outcomes.
By leveraging historical data, you can make more informed predictions and increase your chances of successful bets.
To maximize your success in basketball over 123.5 points betting, consider implementing the following strategies:
By employing these strategies, you can enhance your betting experience and improve your chances of success in over 123.5 points markets.
In today's data-driven world, advanced metrics play a crucial role in shaping betting predictions. By analyzing detailed statistics, bettors can gain deeper insights into team performance and potential outcomes.
Leveraging these advanced metrics allows bettors to make more informed decisions and identify undervalued opportunities in the market.
Injuries can significantly impact a team's scoring potential and overall performance. Understanding the effects of player absences is essential for making accurate predictions in over 123.5 points betting markets.
The landscape of basketball betting is continually evolving with technological advancements and changing player dynamics. Staying ahead requires an understanding of emerging trends that could influence future markets.
Betting on basketball over 123.5 points markets presents unique challenges that require careful navigation. Understanding these obstacles helps bettors mitigate risks while maximizing their chances of success.
As technology continues advancing rapidly along with changes occurring within professional leagues globally, the landscape surrounding basketball over 123. <|repo_name|>amitdhara/make-sense-of-data<|file_sep|>/src/main/scala/com/dhadkar/summarize/Summarize.scala package com.dhadkar.summarize import java.util.Calendar import com.dhadkar.common.{BaseSummaryOutputRowKeyGeneratorTrait} import org.apache.spark.sql.functions._ import org.apache.spark.sql.types._ import org.apache.spark.sql.{DataFrame} /** * Created by amitdha. */ case class SummarizeConfig(inputCols:Array[String], outputCols:Array[String], partitionCol:String) object Summarize { def apply(config : SummarizeConfig)(implicit sparkSession : org.apache.spark.sql.SparkSession) = new Summarize(config) } class Summarize(config : SummarizeConfig)(implicit sparkSession : org.apache.spark.sql.SparkSession) extends BaseSummaryOutputRowKeyGeneratorTrait { def run(inputDF : DataFrame) : DataFrame = { val baseDF = inputDF.selectExpr(config.inputCols.map(x => s"cast($x as double) as $x").mkString(",")).na.fill(0) val summaryDF = baseDF.groupBy(config.partitionCol) .agg( count("*").alias("count"), mean(config.outputCols.map(c => s"max($c)").mkString(",")).alias("avg"), max(config.outputCols.map(c => s"max($c)").mkString(",")).alias("max"), min(config.outputCols.map(c => s"min($c)").mkString(",")).alias("min") ) .withColumnRenamed("count", "cnt") val resultDF = generateOutputRowKey(summaryDF) resultDF } }<|file_sep|># make-sense-of-data Spark jobs used at work <|repo_name|>amitdhara/make-sense-of-data<|file_sep|>/src/main/scala/com/dhadkar/common/EnrichmentUtils.scala package com.dhadkar.common import java.text.SimpleDateFormat import java.util.Calendar import org.apache.spark.sql.functions._ import org.apache.spark.sql.{DataFrame} /** * Created by amitdha. */ object EnrichmentUtils { // def generateOutputRowKey(df : DataFrame)(implicit sparkSession : org.apache.spark.sql.SparkSession) = { // df.withColumn("row_key", // concat_ws(":", // df("region_id"), // df("hour"), // df("day"), // df("month"), // df("year")) // ) // } }<|file_sep|># make-sense-of-data Spark jobs used at work <|file_sep|># Spark setup spark-master: #docker run --name spark-master -d --net=spark-net # -p "8080:8080" # -p "7077:7077" # -p "8081:8081" # pgbi/spark-master docker run --name spark-master -d --net=spark-net -p "8080:8080" -p "7077:7077" -p "8081:8081" jupyter/all-spark-notebook spark-worker: docker run --name spark-worker -d --net=spark-net --link spark-master pgbi/spark-worker # Jupyter notebook jupyter: docker exec -it spark-master jupyter notebook --ip=0.0.0.0 --no-browser # Kafka setup kafka: docker run -d --net=spark-net --name kafka -e KAFKA_ADVERTISED_LISTENERS=PLAINTEXT://kafka:9092 -e KAFKA_ZOOKEEPER_CONNECT=zookeeper:2181 confluentinc/cp-kafka zookeeper: docker run -d --net=spark-net --name zookeeper confluentinc/cp-zookeeper # Kafdrop UI kafdrop: docker run -d --net=spark-net --name kafdrop -e KAFKA_BROKERCONNECT=kafka:9092 -e JVM_OPTS=-Xms16M -Xmx48M -p "9000:9000" weaveworks/kafdrop # Connect Kafka topic kafka-topics: kafka-topics.sh --zookeeper zookeeper --list kafka-topic-create: kafka-topics.sh --create --topic testTopic --bootstrap-server kafka:9092 --partitions 1 --replication-factor 1 kafka-topic-delete: kafka-topics.sh --zookeeper zookeeper --delete --topic testTopic kafka-produce: kafka-console-producer.sh --broker-list kafka:9092 --topic testTopic kafka-consume: kafka-console-consumer.sh --bootstrap-server kafka:9092 --topic testTopic<|repo_name|>amitdhara/make-sense-of-data<|file_sep|>/src/main/scala/com/dhadkar/common/BaseSummaryOutputRowKeyGeneratorTrait.scala package com.dhadkar.common import java.text.SimpleDateFormat import java.util.Calendar import org.apache.spark.sql.functions._ import org.apache.spark.sql.types._ import org.apache.spark.sql.{DataFrame} /** * Created by amitdha. */ trait BaseSummaryOutputRowKeyGeneratorTrait { def generateOutputRowKey(df : DataFrame)(implicit sparkSession : org.apache.spark.sql.SparkSession) = { df.withColumn("row_key", concat_ws(":", df("region_id"), df("hour"), df("day"), df("month"), df("year")) ) } }<|repo_name|>amitdhara/make-sense-of-data<|file_sep|>/src/main/scala/com/dhadkar/enrichment/Enrichment.scala package com.dhadkar.enrichment import com.dhadkar.common.{BaseEnrichmentConfigTrait} import org.apache.spark.sql.functions._ import org.apache.spark.sql.types._ import org.apache.spark.sql.{DataFrame} /** * Created by amitdha. */ case class EnrichmentConfig(regionId:String, inputCols:Array[String], outputCols:Array[String], partitionCol:String, rowKeyCol:String, regionIdCol:String, hourCol:String, dayCol:String, monthCol:String, yearCol:String, dateType:String) extends BaseEnrichmentConfigTrait object Enrichment { def apply(config : EnrichmentConfig)(implicit sparkSession