UFC

Unlock the Thrill of Football National 2 Group A France

Welcome to the ultimate destination for all things related to Football National 2 Group A France. Here, you'll find daily updates on fresh matches, expert betting predictions, and in-depth analysis that keeps you ahead of the game. Whether you're a seasoned football enthusiast or new to the sport, this platform offers everything you need to stay informed and make the most of your football experience.

Comprehensive Match Coverage

Every day, our dedicated team of experts provides detailed coverage of all matches in Football National 2 Group A France. From pre-match build-ups to post-match analyses, we ensure you don't miss a beat. Our coverage includes:

  • Detailed match reports with key highlights
  • Player performance reviews
  • Strategic breakdowns of team tactics
  • Exclusive interviews with coaches and players

No football matches found matching your criteria.

Expert Betting Predictions

Betting on football can be both exciting and rewarding. To help you make informed decisions, we offer expert betting predictions crafted by seasoned analysts. Our predictions are based on:

  • Comprehensive statistical analysis
  • Historical performance data
  • Current team form and fitness levels
  • Insights from insider sources

In-Depth Team Analyses

Understanding team dynamics is crucial for predicting match outcomes. Our platform provides in-depth analyses of each team in Football National 2 Group A France, covering:

  • Team history and background
  • Current squad strengths and weaknesses
  • Key players to watch
  • Potential impact of recent transfers or injuries

Daily Match Updates

Stay updated with our real-time match updates. Every day, we bring you live scores, goal alerts, and minute-by-minute commentary for all matches in the league. Our updates ensure you never miss any action-packed moments.

User-Generated Content

We believe in the power of community. Our platform encourages user-generated content where fans can share their insights, predictions, and opinions. Engage with other enthusiasts through:

  • Discussion forums
  • User polls and surveys
  • Opinion pieces and fan blogs

Interactive Features

To enhance your experience, we offer a range of interactive features:

  • Fantasy football leagues tailored to Football National 2 Group A France
  • <|repo_name|>GeeShin/Handwriting-Detection<|file_sep|>/src/BackgroundSubtractor.py import numpy as np import cv2 class BackgroundSubtractor: def __init__(self): self.background = None self.subtracted = None self.prev_subtracted = None self.motion_history = None def initialize(self, image): self.background = np.zeros(image.shape) self.subtracted = np.zeros(image.shape) self.prev_subtracted = np.zeros(image.shape) self.motion_history = np.zeros(image.shape[:2]) def update(self, image): if self.background is None: self.initialize(image) self.subtracted = cv2.absdiff(image, self.background) self.subtracted[self.subtracted > (255 * .1)] = 255 diff = cv2.absdiff(self.subtracted, self.prev_subtracted) motion_mask = diff > (255 * .1) self.motion_history[motion_mask] += .1 self.motion_history[~motion_mask] *= .9 self.prev_subtracted[:] = self.subtracted[:] def get_motion_history(self): return self.motion_history def get_background(self): return self.background def get_subtracted(self): return self.subtracted<|repo_name|>GeeShin/Handwriting-Detection<|file_sep|>/src/FeatureExtractor.py import cv2 import numpy as np from utils import * class FeatureExtractor: def __init__(self): pass def extract_features(self, image): if len(image.shape) == 3: image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) features = [] features.extend(extract_lbp_features(image)) return features def extract_lbp_features(image): features = [] cells = extract_cells(image) for cell in cells: lbp = extract_lbp(cell) features.extend(lbp.flatten()) return features<|repo_name|>GeeShin/Handwriting-Detection<|file_sep|>/src/utils.py import numpy as np import cv2 def detect_edges(image): image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) kernel_size = (5,5) blurred_image = cv2.GaussianBlur(image_gray,kernel_size,(0,0)) sobelx_64f = cv2.Sobel(blurred_image,cv2.CV_64F,1,0,ksize=5) sobely_64f = cv2.Sobel(blurred_image,cv2.CV_64F,0,1,ksize=5) image_sobelx_8u=cv2.convertScaleAbs(sobelx_64f) #convert back to uint8 image_sobely_8u=cv2.convertScaleAbs(sobely_64f) #convert back to uint8 image_sobelxy_8u=cv2.addWeighted(image_sobelx_8u,0.5,image_sobely_8u,0.5,0) #combine sobel x and y kernel_size=(5,5) #kernel size for dilation and erosion kernel=np.ones(kernel_size,np.uint8) #kernel for dilation and erosion image_dilation_8u=cv2.dilate(image_sobelxy_8u,kernel) #dilate image return image_dilation_8u def detect_contours(edges): contours,hierarchy=cv2.findContours(edges,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) return contours def get_bounding_rect(contour): rect=cv2.boundingRect(contour) return rect def extract_cells(image): cells=[] rows=int(np.sqrt(20)) #extract cells from an image with at least rows x rows number of cells cols=int(np.sqrt(20)) rows_step=int(np.floor(image.shape[0]/rows)) #step size between cells along rows cols_step=int(np.floor(image.shape[1]/cols)) for i in range(rows): #iterate over each cell for j in range(cols): x_start=i*rows_step y_start=j*cols_step x_end=x_start+rows_step y_end=y_start+cols_step cell=image[x_start:x_end,y_start:y_end] #extract cell from image cell=cv2.resize(cell,(24,24)) #resize cell to fixed size cells.append(cell) #append cell to list return cells def extract_lbp(cell): radius=1 n_points=8*radius lbp_image=np.zeros((cell.shape[0],cell.shape[1])) for i in range(radius+1): for j in range(radius+1): if (i==radius or j==radius): pixel=cell[i:i+radius*2,j:j+radius*2] #extract pixel neighborhood center_pixel=cell[i+radius,j+radius] #center pixel pattern=[] for m in range(pixel.shape[0]): for n in range(pixel.shape[1]): if (m!=radius or n!=radius): #exclude center pixel from pattern if (pixel[m,n]>=center_pixel): pattern.append(1) else: pattern.append(0) lbp_value=0 for p in range(len(pattern)): lbp_value+=pattern[p]*(pow(2,p)) lbp_image[i:i+radius*2,j:j+radius*2]=lbp_value return lbp_image<|file_sep|># Handwriting Detection This project is aimed at detecting handwritten text within an image using background subtraction and contour detection. ## Prerequisites The following software packages are required: - Python >= v3 - OpenCV >= v4 - scikit-learn >= v0.21 To install these packages run the following command: pip install -r requirements.txt ## Usage Run the following command to start the application: python main.py A window will pop up displaying the video stream from your camera device (default: device index `0`). Press `q` or `esc` to quit. ## License This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details. <|repo_name|>GeeShin/Handwriting-Detection<|file_sep|>/src/main.py import os import sys import time import numpy as np import cv2 from sklearn import svm from sklearn.externals import joblib from BackgroundSubtractor import BackgroundSubtractor from FeatureExtractor import FeatureExtractor class HandwritingDetector: def __init__(self): self.classifier_filename = os.path.join(os.path.dirname(__file__), 'classifier.pkl') self.bg_subtractor = BackgroundSubtractor() self.feature_extractor = FeatureExtractor() def train_classifier(self): print("Loading training data...") training_data_path = os.path.join(os.path.dirname(__file__), 'training_data') handwritten_data_filename = os.path.join(training_data_path,'handwritten.csv') handwritten_data_file=open(handwritten_data_filename,'r') handwritten_data_file.readline() #skip first line handwritten_data=[] #list for storing handwritten data for line in handwritten_data_file: #iterate over handwritten data file line by line line_split=line.strip().split(',') #split line at commas line_split.pop(0) #remove first column handwritten_data.append([float(x) for x in line_split]) #append row to handwritten data list print("Loading background data...") background_data_filename=os.path.join(training_data_path,'background.csv') background_data_file=open(background_data_filename,'r') background_data_file.readline() #skip first line background_data=[] #list for storing background data for line in background_data_file: #iterate over background data file line by line line_split=line.strip().split(',') #split line at commas line_split.pop(0) #remove first column background_data.append([float(x) for x in line_split]) #append row to background data list print("Training classifier...") classifier=svm.SVC(gamma='scale',C=10000) print("Training classifier with handwritten data...") classifier.fit(handwritten_data,[1]*len(handwritten_data)) print("Training classifier with background data...") classifier.fit(background_data,[0]*len(background_data)) print("Saving classifier...") joblib.dump(classifier,self.classifier_filename) def detect_handwriting(self,image,motion_threshold=.6,image_threshold=.6): edges=detect_edges(image) contours=detect_contours(edges) if contours!=None: contours=sorted(contours,key=cv2.contourArea)[::-1] for contour in contours: bounding_rect=get_bounding_rect(contour) if bounding_rect[3]>bounding_rect[1]*image_threshold: x,y,w,h=bounding_rect if h>=image.shape[0]*motion_threshold: cell=image[y:y+h,x:x+w] cell=cv2.resize(cell,(24,24)) features=self.feature_extractor.extract_features(cell) prediction=self.classifier.predict([features])[0] if prediction==1: return True return False def run(self): print("Loading classifier...") classifier=joblib.load(self.classifier_filename) cap=cv2.VideoCapture(0) while True: ret,image=cap.read() self.bg_subtractor.update(cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)) motion_history=self.bg_subtractor.get_motion_history() subtracted=self.bg_subtractor.get_subtracted() subtracted=subtracted.astype('uint8') subtracted[np.where(subtracted > (255 * .1))] = 255 subtracted=np.where(subtracted > (255 * .05),255,0).astype('uint8') kernel=np.ones((5,5),np.uint8) subtracted=cv2.morphologyEx(subtracted,cv2.MORPH_CLOSE,kernel) motion_mask=motion_history > .25 subtracted[np.where(motion_mask)]=(subtracted.astype('uint16') + (255 * .25)).astype('uint8') subtracted=np.where(subtracted > (255 * .05),255,0).astype('uint8') kernel=np.ones((5,5),np.uint8) subtracted=cv2.morphologyEx(subtracted,cv2.MORPH_CLOSE,kernel) if self.detect_handwriting(motion_history,image=image): print("Handwriting detected!") text="Handwriting Detected!" font=cv2.FONT_HERSHEY_SIMPLEX font_scale=.6 thickness=4 color=(255,255,255) size=text_size=cv2.getTextSize(text,False,cv2.FONT_HERSHEY_SIMPLEX,.6)[0] offset=(10,size[1]+10) box_coords=((image.shape[1]-size[0]-offset[0],image.shape[0]-offset[1]),(image.shape[1]-offset[0],image.shape[0])) box_color=(100*(int(text_color:=color)).tolist()) box_thickness=-1 cv.rectangle(image,*box_coords,color=color,width=thickness) text_origin=(box_coords[0][0]+offset[0],box_coords[0][1]+offset[1]) text_origin=tuple(np.array(text_origin).astype('int32')) cv.putText(img=image,text=text_orgin.putputText(img=image,text=text_orgin,text=text_orgin,text=text_orgin,text=text_orgin,text=text_orgin,text=text_orgin,text=text_orgin,text=text_orgin,text=text_orgin,text=text_orgin,text=text_orgin,text=text_orgin,text=text_orgin,text=text_orgin,text=text_orgin,text=text,color=colororg,color=colororg,color=colororg,color=colororg,color=colororg,color=colororg,color=colororg,color=colororg,covorg=covorg,forg=forg,forg=forg,forg=forg,forg=forg,forg=forg,forg=forg,forg=forg,forg=forg,forg=forg,forgt:cv.FONT_HERSHEY_SIMPLEX,scale=font_scale,lineType=cv.LINE_AA) combined=np.concatenate((cv.cvtColor(cv.cvtColor(subtracted,cv.COLOR_GRAYTOBGR),cv.COLOR_BGRTOHSV)[...,1],cv.cvtColor(cv.cvtColor(motion_history,cv.COLOR_GRAYTOBGR),cv.COLOR_BGRTOHSV)[...,1]),axis=1) combined=np.where(combined>(255*.25),255.,combined)/255.