Unlock the Thrill of Football National 2 Group A France
Welcome to the ultimate destination for all things related to Football National 2 Group A France. Here, you'll find daily updates on fresh matches, expert betting predictions, and in-depth analysis that keeps you ahead of the game. Whether you're a seasoned football enthusiast or new to the sport, this platform offers everything you need to stay informed and make the most of your football experience.
Comprehensive Match Coverage
Every day, our dedicated team of experts provides detailed coverage of all matches in Football National 2 Group A France. From pre-match build-ups to post-match analyses, we ensure you don't miss a beat. Our coverage includes:
- Detailed match reports with key highlights
- Player performance reviews
- Strategic breakdowns of team tactics
- Exclusive interviews with coaches and players
Expert Betting Predictions
Betting on football can be both exciting and rewarding. To help you make informed decisions, we offer expert betting predictions crafted by seasoned analysts. Our predictions are based on:
- Comprehensive statistical analysis
- Historical performance data
- Current team form and fitness levels
- Insights from insider sources
In-Depth Team Analyses
Understanding team dynamics is crucial for predicting match outcomes. Our platform provides in-depth analyses of each team in Football National 2 Group A France, covering:
- Team history and background
- Current squad strengths and weaknesses
- Key players to watch
- Potential impact of recent transfers or injuries
Daily Match Updates
Stay updated with our real-time match updates. Every day, we bring you live scores, goal alerts, and minute-by-minute commentary for all matches in the league. Our updates ensure you never miss any action-packed moments.
User-Generated Content
We believe in the power of community. Our platform encourages user-generated content where fans can share their insights, predictions, and opinions. Engage with other enthusiasts through:
- Discussion forums
- User polls and surveys
- Opinion pieces and fan blogs
Interactive Features
To enhance your experience, we offer a range of interactive features:
- Fantasy football leagues tailored to Football National 2 Group A France
<|repo_name|>GeeShin/Handwriting-Detection<|file_sep|>/src/BackgroundSubtractor.py
import numpy as np
import cv2
class BackgroundSubtractor:
def __init__(self):
self.background = None
self.subtracted = None
self.prev_subtracted = None
self.motion_history = None
def initialize(self, image):
self.background = np.zeros(image.shape)
self.subtracted = np.zeros(image.shape)
self.prev_subtracted = np.zeros(image.shape)
self.motion_history = np.zeros(image.shape[:2])
def update(self, image):
if self.background is None:
self.initialize(image)
self.subtracted = cv2.absdiff(image, self.background)
self.subtracted[self.subtracted > (255 * .1)] = 255
diff = cv2.absdiff(self.subtracted, self.prev_subtracted)
motion_mask = diff > (255 * .1)
self.motion_history[motion_mask] += .1
self.motion_history[~motion_mask] *= .9
self.prev_subtracted[:] = self.subtracted[:]
def get_motion_history(self):
return self.motion_history
def get_background(self):
return self.background
def get_subtracted(self):
return self.subtracted<|repo_name|>GeeShin/Handwriting-Detection<|file_sep|>/src/FeatureExtractor.py
import cv2
import numpy as np
from utils import *
class FeatureExtractor:
def __init__(self):
pass
def extract_features(self, image):
if len(image.shape) == 3:
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
features = []
features.extend(extract_lbp_features(image))
return features
def extract_lbp_features(image):
features = []
cells = extract_cells(image)
for cell in cells:
lbp = extract_lbp(cell)
features.extend(lbp.flatten())
return features<|repo_name|>GeeShin/Handwriting-Detection<|file_sep|>/src/utils.py
import numpy as np
import cv2
def detect_edges(image):
image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
kernel_size = (5,5)
blurred_image = cv2.GaussianBlur(image_gray,kernel_size,(0,0))
sobelx_64f = cv2.Sobel(blurred_image,cv2.CV_64F,1,0,ksize=5)
sobely_64f = cv2.Sobel(blurred_image,cv2.CV_64F,0,1,ksize=5)
image_sobelx_8u=cv2.convertScaleAbs(sobelx_64f) #convert back to uint8
image_sobely_8u=cv2.convertScaleAbs(sobely_64f) #convert back to uint8
image_sobelxy_8u=cv2.addWeighted(image_sobelx_8u,0.5,image_sobely_8u,0.5,0) #combine sobel x and y
kernel_size=(5,5) #kernel size for dilation and erosion
kernel=np.ones(kernel_size,np.uint8) #kernel for dilation and erosion
image_dilation_8u=cv2.dilate(image_sobelxy_8u,kernel) #dilate image
return image_dilation_8u
def detect_contours(edges):
contours,hierarchy=cv2.findContours(edges,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
return contours
def get_bounding_rect(contour):
rect=cv2.boundingRect(contour)
return rect
def extract_cells(image):
cells=[]
rows=int(np.sqrt(20)) #extract cells from an image with at least rows x rows number of cells
cols=int(np.sqrt(20))
rows_step=int(np.floor(image.shape[0]/rows)) #step size between cells along rows
cols_step=int(np.floor(image.shape[1]/cols))
for i in range(rows): #iterate over each cell
for j in range(cols):
x_start=i*rows_step
y_start=j*cols_step
x_end=x_start+rows_step
y_end=y_start+cols_step
cell=image[x_start:x_end,y_start:y_end] #extract cell from image
cell=cv2.resize(cell,(24,24)) #resize cell to fixed size
cells.append(cell) #append cell to list
return cells
def extract_lbp(cell):
radius=1
n_points=8*radius
lbp_image=np.zeros((cell.shape[0],cell.shape[1]))
for i in range(radius+1):
for j in range(radius+1):
if (i==radius or j==radius):
pixel=cell[i:i+radius*2,j:j+radius*2] #extract pixel neighborhood
center_pixel=cell[i+radius,j+radius] #center pixel
pattern=[]
for m in range(pixel.shape[0]):
for n in range(pixel.shape[1]):
if (m!=radius or n!=radius): #exclude center pixel from pattern
if (pixel[m,n]>=center_pixel):
pattern.append(1)
else:
pattern.append(0)
lbp_value=0
for p in range(len(pattern)):
lbp_value+=pattern[p]*(pow(2,p))
lbp_image[i:i+radius*2,j:j+radius*2]=lbp_value
return lbp_image<|file_sep|># Handwriting Detection
This project is aimed at detecting handwritten text within an image using background subtraction and contour detection.
## Prerequisites
The following software packages are required:
- Python >= v3
- OpenCV >= v4
- scikit-learn >= v0.21
To install these packages run the following command:
pip install -r requirements.txt
## Usage
Run the following command to start the application:
python main.py
A window will pop up displaying the video stream from your camera device (default: device index `0`). Press `q` or `esc` to quit.
## License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
<|repo_name|>GeeShin/Handwriting-Detection<|file_sep|>/src/main.py
import os
import sys
import time
import numpy as np
import cv2
from sklearn import svm
from sklearn.externals import joblib
from BackgroundSubtractor import BackgroundSubtractor
from FeatureExtractor import FeatureExtractor
class HandwritingDetector:
def __init__(self):
self.classifier_filename = os.path.join(os.path.dirname(__file__), 'classifier.pkl')
self.bg_subtractor = BackgroundSubtractor()
self.feature_extractor = FeatureExtractor()
def train_classifier(self):
print("Loading training data...")
training_data_path = os.path.join(os.path.dirname(__file__), 'training_data')
handwritten_data_filename = os.path.join(training_data_path,'handwritten.csv')
handwritten_data_file=open(handwritten_data_filename,'r')
handwritten_data_file.readline() #skip first line
handwritten_data=[] #list for storing handwritten data
for line in handwritten_data_file: #iterate over handwritten data file line by line
line_split=line.strip().split(',') #split line at commas
line_split.pop(0) #remove first column
handwritten_data.append([float(x) for x in line_split]) #append row to handwritten data list
print("Loading background data...")
background_data_filename=os.path.join(training_data_path,'background.csv')
background_data_file=open(background_data_filename,'r')
background_data_file.readline() #skip first line
background_data=[] #list for storing background data
for line in background_data_file: #iterate over background data file line by line
line_split=line.strip().split(',') #split line at commas
line_split.pop(0) #remove first column
background_data.append([float(x) for x in line_split]) #append row to background data list
print("Training classifier...")
classifier=svm.SVC(gamma='scale',C=10000)
print("Training classifier with handwritten data...")
classifier.fit(handwritten_data,[1]*len(handwritten_data))
print("Training classifier with background data...")
classifier.fit(background_data,[0]*len(background_data))
print("Saving classifier...")
joblib.dump(classifier,self.classifier_filename)
def detect_handwriting(self,image,motion_threshold=.6,image_threshold=.6):
edges=detect_edges(image)
contours=detect_contours(edges)
if contours!=None:
contours=sorted(contours,key=cv2.contourArea)[::-1]
for contour in contours:
bounding_rect=get_bounding_rect(contour)
if bounding_rect[3]>bounding_rect[1]*image_threshold:
x,y,w,h=bounding_rect
if h>=image.shape[0]*motion_threshold:
cell=image[y:y+h,x:x+w]
cell=cv2.resize(cell,(24,24))
features=self.feature_extractor.extract_features(cell)
prediction=self.classifier.predict([features])[0]
if prediction==1:
return True
return False
def run(self):
print("Loading classifier...")
classifier=joblib.load(self.classifier_filename)
cap=cv2.VideoCapture(0)
while True:
ret,image=cap.read()
self.bg_subtractor.update(cv2.cvtColor(image,cv2.COLOR_BGR2GRAY))
motion_history=self.bg_subtractor.get_motion_history()
subtracted=self.bg_subtractor.get_subtracted()
subtracted=subtracted.astype('uint8')
subtracted[np.where(subtracted > (255 * .1))] = 255
subtracted=np.where(subtracted > (255 * .05),255,0).astype('uint8')
kernel=np.ones((5,5),np.uint8)
subtracted=cv2.morphologyEx(subtracted,cv2.MORPH_CLOSE,kernel)
motion_mask=motion_history > .25
subtracted[np.where(motion_mask)]=(subtracted.astype('uint16') + (255 * .25)).astype('uint8')
subtracted=np.where(subtracted > (255 * .05),255,0).astype('uint8')
kernel=np.ones((5,5),np.uint8)
subtracted=cv2.morphologyEx(subtracted,cv2.MORPH_CLOSE,kernel)
if self.detect_handwriting(motion_history,image=image):
print("Handwriting detected!")
text="Handwriting Detected!"
font=cv2.FONT_HERSHEY_SIMPLEX
font_scale=.6
thickness=4
color=(255,255,255)
size=text_size=cv2.getTextSize(text,False,cv2.FONT_HERSHEY_SIMPLEX,.6)[0]
offset=(10,size[1]+10)
box_coords=((image.shape[1]-size[0]-offset[0],image.shape[0]-offset[1]),(image.shape[1]-offset[0],image.shape[0]))
box_color=(100*(int(text_color:=color)).tolist())
box_thickness=-1
cv.rectangle(image,*box_coords,color=color,width=thickness)
text_origin=(box_coords[0][0]+offset[0],box_coords[0][1]+offset[1])
text_origin=tuple(np.array(text_origin).astype('int32'))
cv.putText(img=image,text=text_orgin.putputText(img=image,text=text_orgin,text=text_orgin,text=text_orgin,text=text_orgin,text=text_orgin,text=text_orgin,text=text_orgin,text=text_orgin,text=text_orgin,text=text_orgin,text=text_orgin,text=text_orgin,text=text_orgin,text=text_orgin,text=text_orgin,text=text,color=colororg,color=colororg,color=colororg,color=colororg,color=colororg,color=colororg,color=colororg,color=colororg,covorg=covorg,forg=forg,forg=forg,forg=forg,forg=forg,forg=forg,forg=forg,forg=forg,forg=forg,forg=forg,forgt:cv.FONT_HERSHEY_SIMPLEX,scale=font_scale,lineType=cv.LINE_AA)
combined=np.concatenate((cv.cvtColor(cv.cvtColor(subtracted,cv.COLOR_GRAYTOBGR),cv.COLOR_BGRTOHSV)[...,1],cv.cvtColor(cv.cvtColor(motion_history,cv.COLOR_GRAYTOBGR),cv.COLOR_BGRTOHSV)[...,1]),axis=1)
combined=np.where(combined>(255*.25),255.,combined)/255.