Unlock the Thrill of Norway's Football 3. Division Avd. 1
Welcome to the ultimate destination for all things related to Norway's exciting Football 3. Division Avd. 1. Here, we bring you the freshest updates on matches, expert betting predictions, and in-depth analysis to keep you ahead of the game. Whether you're a die-hard fan or a casual observer, our platform ensures you never miss a beat in this thrilling league.
Stay Updated with Daily Match Reports
Our commitment to providing up-to-the-minute information means that every day, you'll find comprehensive reports on the latest matches in Norway's Football 3. Division Avd. 1. From thrilling comebacks to nail-biting finishes, our coverage captures every moment of excitement and drama on the field.
- Match highlights and key moments
- Detailed player statistics
- Expert commentary and analysis
Expert Betting Predictions: Your Guide to Smart Wagers
Betting on football can be both exhilarating and challenging. That's why we offer expert betting predictions tailored specifically for Norway's Football 3. Division Avd. 1. Our team of seasoned analysts uses a combination of statistical data, historical performance, and current form to provide you with the most reliable insights for making informed betting decisions.
- Pre-match predictions with odds analysis
- In-game betting tips
- Special offers and promotions
Dive Deep into Team Analysis
Understanding the dynamics of each team in the league is crucial for both fans and bettors alike. Our in-depth team analysis covers everything from squad strengths and weaknesses to tactical formations and managerial strategies. Gain a comprehensive understanding of how each team operates and what to expect in their upcoming fixtures.
- Team form and performance trends
- Key player profiles
- Managerial impact and tactics
The Thrill of Local Rivalries
Norway's Football 3. Division Avd. 1 is not just about the games; it's about the passion and pride that come with local rivalries. These matchups are where emotions run high, and legends are made. Experience the intensity as hometown heroes clash on the pitch, bringing their communities together in support of their beloved teams.
- Historic rivalry matches
- Community impact and fan culture
- Memorable moments from past encounters
Player Spotlights: Rising Stars of the League
Every season brings new talent to the forefront, and Norway's Football 3. Division Avd. 1 is no exception. Discover the rising stars who are making waves in the league with our exclusive player spotlights. Learn about their journey, skills, and what makes them stand out in this competitive environment.
- In-depth player interviews
- Performance analysis and potential
- Affiliations with top clubs or national teams
The Role of Youth Academies in Shaping Future Talent
Youth academies play a pivotal role in developing future football stars in Norway's Football 3. Division Avd. 1. Explore how these institutions nurture young talent, focusing on training methodologies, coaching philosophies, and success stories that highlight their impact on the league.
- Overview of top youth academies in Norway
- Success stories of academy graduates
- The future of football talent development in Norway
The Impact of Weather on Match Outcomes
Norway's unpredictable weather can significantly influence match outcomes in Football 3. Division Avd. 1. Delve into how teams adapt their strategies to cope with varying weather conditions, from rain-soaked pitches to snowy landscapes, ensuring they maintain peak performance regardless of the elements.
- Analyzing weather patterns during match days
- Adaptation strategies employed by teams
- Influence of weather on betting odds and predictions
The Economics of Football: Sponsorships and Revenue Streams
Cecilia-Baumgartner/ECG<|file_sep|>/README.md
# ECG
This is an implementation of an ECG based biometric system using feature extraction based on Gaussian Mixture Models (GMM). The dataset used for training was obtained from PhysioNet (https://physionet.org/physiobank/database/ecgmd/).
## Usage
### Training
The following script runs through all ECG recordings provided by PhysioNet and extracts features from them.
python
python train.py -i [path/to/data]
### Testing
The following script takes two ECG recordings as input:
python
python test.py -i [path/to/test/recording] -r [path/to/reference/recording]
The feature vectors are extracted from both recordings using GMMs trained during training phase.
### Plotting GMMs
For plotting purposes it is possible to plot GMMs using:
python
python plot_gmms.py -i [path/to/data]
The resulting plot shows all GMMs used for feature extraction.
## References
[1] *A Gaussian Mixture Model-Based Feature Extraction Method for Electrocardiogram Biometrics*, Nidhi Gupta et al., IEEE Transactions on Information Forensics & Security, Vol 15, Issue 5, May 2020.<|file_sep|># coding=utf-8
import os
import sys
import numpy as np
from scipy.io import loadmat
from scipy.signal import butter, filtfilt
from sklearn.mixture import GaussianMixture
def main():
# parse arguments
if len(sys.argv) != 3:
print('Usage: python test.py -i [path/to/test/recording] -r [path/to/reference/recording]')
sys.exit(1)
# get paths for test file (x) and reference file (y)
test_file = sys.argv[sys.argv.index('-i') + 1]
ref_file = sys.argv[sys.argv.index('-r') + 1]
# extract features from both files
x_features = extract_features(test_file)
y_features = extract_features(ref_file)
# calculate distance between both feature vectors
distance = np.linalg.norm(x_features - y_features)
print('Distance between feature vectors: {}'.format(distance))
if __name__ == '__main__':
main()
def extract_features(file):
# load data from .mat file
data = loadmat(file)['val'].reshape(-1)
# filter signal
bandpass_data = bandpass_filter(data)
# extract features using GMMs trained during training phase (GMMs stored in /models folder)
features = np.array([])
for i in range(7):
gmm = GaussianMixture(n_components=8)
gmm.means_ = np.load('./models/gmm{}_means.npy'.format(i + 1))
gmm.covariances_ = np.load('./models/gmm{}_covariances.npy'.format(i + 1))
gmm.weights_ = np.load('./models/gmm{}_weights.npy'.format(i + 1))
features = np.append(features, gmm.predict_proba(bandpass_data.reshape(-1, 1)))
return features
def bandpass_filter(data):
cutoff_low = .5 / (data.shape[0] / (250 * 60))
cutoff_high = 50 / (data.shape[0] / (250 * 60))
bbtype = 'bandpass'
butter_order = 4
filter_coefficients = butter(butter_order, cutoff_low if bbtype == 'lowpass' else cutoff_high,
btype=bbtype)[0]
filtered_data = filtfilt(filter_coefficients, [1], data)
return filtered_data<|file_sep|># coding=utf-8
import os
import sys
import numpy as np
import matplotlib.pyplot as plt
from scipy.io import loadmat
from scipy.signal import butter, filtfilt
def main():
# parse arguments
if len(sys.argv) != 2:
print('Usage: python plot_gmms.py -i [path/to/data]')
sys.exit(1)
# get path to data directory
data_path = sys.argv[sys.argv.index('-i') + 1]
# get names of all files inside data directory (this assumes that all files have .mat extension)
files_in_data_dir = os.listdir(data_path)
# initialize figure for plotting GMMs
plt.figure(figsize=(12 * len(files_in_data_dir), 6))
plt.subplots_adjust(hspace=.5)
for i in range(len(files_in_data_dir)):
# load data from .mat file
data = loadmat(os.path.join(data_path, files_in_data_dir[i]))['val'].reshape(-1)
# filter signal
bandpass_data = bandpass_filter(data)
plt.subplot(2,len(files_in_data_dir), i + 1)
plt.plot(bandpass_data[:500])
plt.title(files_in_data_dir[i].split('.')[0], fontsize=12)
plt.subplot(2,len(files_in_data_dir), len(files_in_data_dir) + i + 1)
for j in range(7):
gmm_means = np.load('./models/gmm{}_means.npy'.format(j + 1))
gmm_covariances = np.load('./models/gmm{}_covariances.npy'.format(j + 1))
gmm_weights = np.load('./models/gmm{}_weights.npy'.format(j + 1))
x_axis_min = bandpass_data.min() if j == 0 else x_axis_min - .05 * abs(x_axis_min)
x_axis_max = bandpass_data.max() if j == 0 else x_axis_max + .05 * abs(x_axis_max)
x_axis_min -= .5 * gmm_means.min()
x_axis_max += .5 * gmm_means.max()
x_axis_range = np.arange(x_axis_min,x_axis_max,(x_axis_max-x_axis_min)/10000).reshape(-1,1)
y_axis_values_01_to_99_percentile_range_of_x_axis_range_values_under_gaussian_distributions_with_mean_and_covariance_matrix_corresponding_to_each_gaussian_mixture_model_component_and_x_axis_range_values_under_the_entire_gaussian_mixture_model_with_7_components = []
for k in range(gmm_means.shape[0]):
y_axis_values_under_gaussian_distribution_with_mean_and_covariance_matrix_corresponding_to_gaussian_mixture_model_component_k_and_x_axis_range_values_under_the_entire_gaussian_mixture_model_with_7_components_kth_component_weighted_by_the_corresponding_weight_of_the_kth_component_in_the_gaussian_mixture_model =
gmm_weights[k] *
multivariate_normal.pdf(x=x_axis_range,
mean=gmm_means[k],
cov=gmm_covariances[k])
y_axis_values_01_to_99_percentile_range_of_x_axis_range_values_under_gaussian_distributions_with_mean_and_covariance_matrix_corresponding_to_each_gaussian_mixture_model_component_and_x_axis_range_values_under_the_entire_gaussian_mixture_model_with_7_components.append(
y_axis_values_under_gaussian_distribution_with_mean_and_covariance_matrix_corresponding_to_gaussian_mixture_model_component_k_and_x_axis_range_values_under_the_entire_gaussian_mixture_model_with_7_components_kth_component_weighted_by_the_corresponding_weight_of_the_kth_component_in_the_gaussian_mixture_model)
y_axis_values_under_entire_gaussian_mixture_model_with_7_components_and_x_axis_range_values_under_the_entire_gaussian_mixture_model_with_7_components_as_sum_of_y_axis_values_under_each_of_the_seven_individual_gaussian_distributions_with_mean_and_covariance_matrix_corresponding_to_each_of_the_seven_individual_gaussian_mixture_model_components_and_x_axis_range_values_under_the_entire_gaussian_mixture_model_with_7_components_as_sum_of_y_axis_values_under_each_of_the_seven_individual_gaussian_distributions_with_mean_and_covariance_matrix_corresponding_to_each_of_the_seven_individual_gaussian_mixture_model_components_and_x_axis_range_values_under_the_entire_gaussian_mixture_model_with_7_components_weighted_by_the_corresponding_weights_of_the_seven_individual_components_in_the_gaussian_mixture_model =
sum(y_axis_values_01_to_99_percentile_range_of_x_axis_range_values_under_gaussian_distributions_with_mean_and_covariance_matrix_corresponding_to_each_gaussian_mixture_model_component_and_x_axis_range_values_under_the_entire_gaussian_mixture_model_with_7_components)
plt.plot(x_axis_range,y_axis_values_under_entire_gaussian_mixture_model_with_7_components_and_x_axis_range_values_under_the_entire_gaussian_mixture_model_with_7_components_as_sum_of_y_axis_values_under_each_of_the_seven_individual_gaussian_distributions_with_mean_and_covariance_matrix_corresponding_to_each_of_the_seven_individual_gaussian_mixture_model_components_and_x_axis_range_values_under_the_entire_gaussian_mixture_model_with_7_components_as_sum_of_y_axis_values_under_each_of_the_seven_individual_gaussian_distributions_with_mean_and_covariance_matrix_corresponding_to_each_of_the_seven_individual_gaussian_mixture_model_components_and_x_axis_range_values_under_the_entire_gaussian_mixture_model_with_7_components_weighted_by_the_corresponding_weights_of_the_seven_individual_components_in_the_gaussian_mixture_model,
label='GMM {}'.format(j+1))
plt.legend(loc='upper right', fontsize=10)
plt.show()
def bandpass_filter(data):
cutoff_low = .5 / (data.shape[0] / (250 * 60))
cutoff_high = 50 / (data.shape[0] / (250 * 60))
bbtype = 'bandpass'
butter_order = 4
filter_coefficients = butter(butter_order, cutoff_low if bbtype == 'lowpass' else cutoff_high,
btype=bbtype)[0]
filtered_data = filtfilt(filter_coefficients, [1], data)
return filtered_data<|repo_name|>Cecilia-Baumgartner/ECG<|file_sep|>/train.py
# coding=utf-8
import os
import sys
import numpy as np
from scipy.io import loadmat
def main():
if len(sys.argv) != 2:
print('Usage: python train.py -i [path/to/data]')
sys.exit(1)
data_path = sys.argv[sys.argv.index('-i') + 1]
files_in_data_dir = os.listdir(data_path)
for i in range(len(files_in_data_dir)):
print('Training model {}'.format(i+1))
data_i_features_per_second_vector_length_without_any_form_of_preprocessing_or_normalization_or_filtering_or_feature_extraction_or_feature_selection_or_other_transformation_applied_other_than_whole_sequence_resampling_to_one_second_interval_vector_length_one_hundred_fifty_element_long_vector_for_each_one_second_interval_vector_length_one_hundred_fifty_element_long_vector_per_one_second_interval_vector_length_one_hundred_fifty_element_long_vector_per_one_second_interval_vector_length_one_hundred_fifty_element_long_vector_per_one_second_interval_vector_length_one_hundred_fifty_element_long_vector_per_one_second_interval_vector_length_one_hundred_fifty_element_long_vector_per_one_second_interval_vector_length_one_hundred_fifty_element_long_vector_per_one_second_interval_per_subject_per_subject_per_subject_per_subject_per_subject_per_subject_per_subject_per_subject_per_subject_per_subject_per_subject_per_subject_per_subject_per_subject_per_subject_per_subject_per_subject')
data_i_features_array_without_any_form_of_preprocessing_or_normalization_or_filtering_or_feature_extraction_or_feature_selection_or_other_transformation_applied_other_than_whole_sequence_resampling_to_one_second_interval_array_shape_number_of_rows_equal_to_number_of_seconds_times_number_of_elements_equal_to_one_hundred_fifty_for_each_row_array_shape_number_of_rows_equal_to_number_of_seconds_times_number_of_elements_equal_to_one_hundred_fifty_for_each_row_array_shape_number_of_rows_equal_to_number_of_seconds_times_number_of_elements_equal_to_one_hundred_fifty_for_each_row_array_shape_number_of_rows_equal_to_number_of_seconds_times_number_of_elements_equal_to_one_hundred_fifty_for_each_row_array_shape_number_of_rows_equal_to_number_of_seconds_times_number_of_elements_equal_to_one_hundred_fifty_for_each_row_array_shape_number_of_rows_equal_to_number_of_seconds_times_number_of_elements_equal_to_one_hundred_fifty_for_each_row_array_shape_number_of_rows_equal_to_number_of_seconds_times_number_of_elements_equal_to_one_hundred_fifty_for_each_row_array_shape_number_of_rows_equal_to_number_of_seconds_times_number_of_elements_equal_to_one_hundred_fifty_for_each_row_array_shape_number_of_rows_equal_to_number_of_seconds_times_number_of_elements_equal_to_one_hundred_fifty_for_each_row_array_shape_number_of_rows_equal_to_number_of_seconds_times_number_of_elements_equal_to_one_hundred_fifty_for_each_row_array_shape_number_of_rows_equal_to_number_of_seconds_times_number_of_elements_equal_to_one_hundred_fifty_for_each_row_array_shape_numberOfRowsEqualToNumberOfSecondsTimesNumberOfElementsEqualToOneHundredFiftyForEachRowArrayShapeNumberOfRowsEqualToNumberOfSecondsTimesNumberOfElementsEqualToOneHundredFiftyForEachRowArrayShapeNumberOfRowsEqualToNumberOfSecondsTimesNumberOfElementsEqualToOneHundredFiftyForEachRowArrayShapeNumberOfRowsEqualToNumberOfSecondsTimesNumberOfElementsEqualToOneHundredFiftyForEachRowArrayShapeNumberOfRowsEqualToNumberOfSecondsTimesNumberOfElementsEqualToOneHundredFiftyForEachRowArrayShapeNumberOfRowsEqualToNumberOfSecondsTimesNumberOfElementsEqualToOneHundredFiftyForEachRowArrayShapeNumberOfRowsEqualToNumberOfSecondsTimesNumberOfElementsEqualToOneHundredFiftyForEachRowArrayShapeNumberOfRowsEqualToNumberOfSecondsTimesNumberOfElementsEqualToOneHundredFiftyForEachRowArrayShapeNumberOfRowsEqualToNumberOfSecondsTimesNumberOfElementsEqualToOneHundredF